Hypex Electronics BV Kattegat 8 9723 JP Groningen, The Netherlands +31 50 526 4993 sales@hypex.nl www.hypex.nl # **High Grade Audio Power Amplifier Module** ## **Highlights** - Flat, fully load-independent frequency response - Low output impedance - Very low, frequency-independent THD - Very low noise - Fully passive loop control - Consistent top performer in listening trials #### **Features** - Runs on unregulated +/- rails - Pop-free start and stop control - Differential audio input - No compromise components - LM4562 buffer OpAmp - HxR12 ready - Improved on-board buffer supply - Overcurrent and overvoltage protection - Weight: 160gms (5.5oz.) # **Applications** - Monitor loudspeakers for recording and mastering studios - Audiophile power amplifiers for professional and consumer use - Public Address systems - Home theatre systems - Active loudspeakers # Description The UcD400HG amplifier module is a self-contained high-performance class D amplifier intended for a wide range of audio applications, ranging from Public Address systems to ultrahigh-fidelity replay systems for studio and home use. Chief distinguishing features are flat frequency response irrespective of load impedance, nearly frequency-independent distortion behaviour and very low radiated and conducted EMI. Control is based on a phase-shift controlled self-oscillating loop taking feedback only at the speaker output. R4 1 #### **Contents** | Con <sup>-</sup> | tents | 2 | |------------------|----------------------------------|---| | | Performance data | | | | Absolute maximum ratings | | | | Recommended Operating Conditions | | | | Connections | | | | Typical Performance Graphs | | ## 1 Performance data #### Power supply = +/-65V, Load= $4\Omega$ , MBW=40kHz, unless otherwise noted | Item | Symbol | Min | Тур | Max | Unit | Notes | |--------------------|-------------------|------|-------|-------|------|------------------------------------| | Output Power | P <sub>R</sub> | - | 400 | - | W | THD=1%, Load=4Ω | | • | | - | 240 | - | W | THD=1%, Load=8Ω | | Distortion | THD+N | - | 0.01 | 0.05 | % | 20Hz <f<20khz<sup>1)</f<20khz<sup> | | | | | | | | Pout <p<sub>R/2</p<sub> | | | | - | - | 0.004 | % | 20Hz <f<20khz< td=""></f<20khz<> | | | | | | | | Pout=1W | | Output noise | U <sub>N</sub> | - | 30 | 35 | μV | Unwtd, 20Hz-20kHz | | Output Impedance | Z <sub>out</sub> | - | - | 20 | mΩ | f<1kHz | | | | - | - | 150 | mΩ | f<20kHz | | Power Bandwidth | PBW | | 20-35 | | kHz | 2) | | Frequency Response | | 10 | - | 50k | Hz | +0/-3dB. All loads. | | Voltage Gain | $A_{\vee}$ | 25.5 | 26 | 26.5 | dB | | | Supply Ripple | PSRR | | 65 | | dB | Either rail, all frequencies. | | Rejection | | | | | | | | Efficiency | η | | 92 | | % | Full power | | Idle Losses | P <sub>o</sub> | | 8 | | W | | | Standby Current | I <sub>STBY</sub> | | 10 | | mA | | | Current Limit | | | 20 | | Α | Stop mode after limiting | | | | | | | | 40ms | **Note 1:** At higher audio frequencies there are not enough harmonics left in the audio band to make a meaningful THD measurement. High frequency distortion is therefore determined using a 18.5kHz+19.5kHz 1:1 two-tone IMD test. **Note 2:** Dielectric losses in the output capacitor limit long term (>30s) full-power bandwidth to 15kHz. # 2 Absolute maximum ratings # Correct operation at these limits is not guaranteed. Operation beyond these limits may result in irreversible damage | result in inteversishe damage | | | | | | | | |-------------------------------|--------------------|--------|------|----------------------------------------------|--|--|--| | Item | Symbol | Rating | Unit | Notes | | | | | Power supply voltage | V <sub>B</sub> | +/-75 | V | Unit shuts down when either rail exceeds 75V | | | | | Peak output current | I <sub>OUT.P</sub> | 18 | Α | Unit current-limits at 18A | | | | | Input voltage | V <sub>IN</sub> | +/-12 | V | Either input referred to ground | | | | | Air Temperature | T <sub>AMB</sub> | 65 | ٥C | | | | | | Heat-sink | T <sub>SINK</sub> | 90 | ٥C | User to select heat sink to insure this | | | | | temperature | | | | condition under most adverse use case | | | | R5 2 # 3 Recommended Operating Conditions | Item | Symbol | Min | Тур | Max | Unit | Notes | |--------------------------------------------|-------------------|--------------------|-----|------------------|------|-----------------------------------------------------| | Power supply voltage | V <sub>B</sub> | 45 <sup>1)</sup> | 57 | 67 <sup>2)</sup> | V | | | Load impedance | Z <sub>LOAD</sub> | 1 | | | Ω | | | Source impedance | $Z_{SRC}$ | | | 7 | kΩ | Differential. Corresponds to 3dB noise increase. | | Effective power supply storage capacitance | C <sub>SUP</sub> | 4700 <sup>3)</sup> | | | μF | Per rail, per attached amplifier. 4Ω load presumed. | - 1) Unit shuts down when either rail drops below 30V. - 2) Unit shuts down when either rail exceeds 75V. - 3) The effective power supply storage capacitance of Hypex SMPS is already in excess of $4700\mu F$ . Do not add supplementary capacitance. ## **4** Connections #### 4.1 J1: Input and ON/OFF control Connector type: 4-pin MOLEX® KK® series, part number 22-27-2041. | Pin | Function | |-----|--------------------------| | 1 | ON/OFF control 1) | | 2 | Inverting Audio Input | | 3 | GND | | 4 | Noninverting Audio Input | **Note 1:** During initial power up this pin is disabled for a period of 1.5s. Unlike previous UcD400 models there is no delay after enabling the amplifier. ## 4.2 Input Characteristics | Item | Symbol | Min | Тур | Max | Unit | Notes | |----------------------|-----------------|-----|-----|-----|------|-----------------------------| | Input Impedance | Z <sub>IN</sub> | | 100 | | kΩ | Either input to ground | | Common Mode | CMRR | | 75 | | dB | All frequencies | | Rejection Ratio | | | | | | | | Control voltage on | | | | 3 | V | | | pin 4, amplifier ON | | | | | | | | Control voltage on | | 12 | | | V | Internally pulled up to 15V | | pin 4, amplifier OFF | | | | | | | **Note:** It is recommended to use an open collector output to control the on/off pin. #### 4.3 J2: Loudspeaker output (hot) Connector type: 6,3x0,8 FASTON® tab. #### 4.4 J3: Loudspeaker output (cold) Connector type: 6,3x0,8 FASTON® tab. Internally connected to GND. Note: This is the feedback reference. For best performance, do not use another ground connection for the loudspeaker. #### 4.5 J4: Positive power supply connection, +VB Connector type: 6,3x0,8 FASTON® tab. #### 4.6 J5: Power supply ground connection, GND Connector type: 6,3x0,8 FASTON® tab. #### 4.7 J6: Negative power supply connection, -VB Connector type: 6,3x0,8 FASTON® tab. R5 3 # 5 Typical Performance Graphs ## 5.1 THD vs. Power (1kHz, $4\Omega$ ) # 5.2 THD vs. Frequency (8 $\Omega$ ) From top to bottom: 40W, 10W, 1W # 5.3 Frequency Response ( $4\Omega$ , $8\Omega$ and open circuit) From top to bottom: open circuit, $8\Omega$ , $4\Omega$ ## 5.4 Output Impedance ## 5.5 19+20kHz IMD (10W, 4 ohms) DISCLAIMER: This subassembly is designed for use in music reproduction equipment only. No representations are made as to fitness for other uses. Except where noted otherwise any specifications given pertain to this subassembly only. Responsibility for verifying the performance, safety, reliability and compliance with legal standards of end products using this subassembly falls to the manufacturer of said end product. LIFE SUPPORT POLICY: Use of Hypex products in life support equipment or equipment whose failure can reasonably be expected to result in injury or death is not permitted except by explicit written consent from Hypex Electronics BV. | Document<br>Revision | PCB<br>Version | Description | Date | |----------------------|-----------------------------------------|---------------------------------------------------------------------|------------| | R1 | UcD400HGV1/2 | Initial draft. | | | R2 | UcD400HGV2:<br>from SN<br>06091204_0001 | OVP level increased to 75V to for compatibility reasons SMPS400/67. | 29.04.2009 | | R3 | UcD400HGV2 | Current limiter value correct (21A): 18A. | 24.11.2009 | | R4 | UcD400HGV2 | Format changed | 09.03.2012 | | R5 | UcD400HGV2 | Recommended operating conditions updated | 25.05.2012 | R5 5